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Cold Water Coral

* Reefs provide habitat and support a
myriad marine species (>40m)

* Spawning grounds / nurseries

* Protection from strong incoming
currents

* Habitat frameworks for commercially
important species (cod, halibut, crabs,
etc.)

* Coral skeletons serves as paleoarchive
of environmental conditions

@ Zoanthidea @ Filifera Pennatulacea @ Scleractinia

® Antipatharia Octocorallia @ Alcyonacea



Cold Water
Coral

* Attaches to the exposed rocky
surfaces

e Survival depended on ability of
polyps to capture prey

* filter-feed on tiny organisms
delivered by passing currents

e forms a dense matrix that creates
habitat




Goldilocks
Principle

Survival

* The “survival threshold” is based
threshold

upon prey capture.

* Not surpassing this threshold
would lead to polyp mortality,
leaving exposed “dead”
framework.

Prey Capture

 Individual polyps can surpass the
threshold by either capturing .
prey in optimg! cond‘itions or sub- T .
optimal conditions given
adequate time




Growth Model

The model is looking for zones of optimal
velocity around a coral colony to identify the
direction of growth. Branching occurs
spontaneously.

Growth and death is based on ‘energetic
reserves’ — energy that corals can store
during optimal conditions, after they meet
their energetic demands.

The energetic reserves decrease or increase
dynamically according to the flow conditions.

If the energetic reserves are depleted and a
coral is still exposed to sub-optimal
conditions, the coral will be considered dead




SPH Framework

SPH provide means for dynamic FSI interaction

Solves mass and momentum conservation

Time integration only to monitor growth iteration

Embed growth and death model




* In situ data from a recent study (Vad et al., 2017) showed that
the ratio of live coral tissue to dead coral skeleton was
between 0.1 and 0.27.

E n e rget l C Re S e rve . Additionally, it was shown that the ratio dropped as the colony
G ro Wt h I\/I O d e | size became larger and larger.

* Both of these attributes are also true for the simulated corals.
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Nutrient Growth Model
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Acidification:
Dissolution

. No dissolution of exposed skeleton © CO,*
Q@ HCOy
. Dissolution of exposed skeleton O H*



Acidification: Dissolution

Dynamic coral growth, while also increasing the water ‘acidity’ from Ato F




Restoratior

with Artific
Structures
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Restoration: FSI
W|th Art|f|C|a Varying current velocities
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Future Challenges

* 3D models require large execution times — coupling with GPU-accelerated methodology
would allow simulation of larger domains and more realistic environments

* To produce a complete model for real restoration practices, multiple variables need to
be considered:

» Local environmental data (currents), for tropical corals (sunlight, wave & tides)

» Coupling with nutrient diffusion model, introduction of additional parameters
(temperature, salinity, acidity)

» The physical characteristics of the artificial structures
» Spacing between the structures, positioning of coral colonies
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