
CCP-WSI Programming Day : Course Notes

Learning Outcomes:

Modifying, writing and compiling OpenFOAM apps, model (shared object) libraries for
runtime selection. These notes accompny the code examples which you should have
downloaded and unpacked into your home run directory. The examples all use v5 from
the foundation (but may work with other branches).

WSI.1 Compiling in OpenFOAM

One common task with OpenFOAM is modifying and recompiling code. In OpenFOAM,
each individual program is stored in its own separate directory, which can contain .C
(code) and .H (header) files which are compiled and joined together to create an exe-
cutable program. OpenFOAM provides a very convenient mechanism for compiling its
programs; just go to the specific code directory and type

wmake

and the program will be compiled.

[Q.WSI.1] Compile magU. Go into the code directory, type wmake

[Q.WSI.2] Try altering magU to calculate enstropy, defined as

Σ =
1

2
|∇ × u|2

You can also write a code to calculate vorticity. In both cases you will need to calculate
the explicit curl using the function

fvc::curl(U)

The function ::magSqr may also be useful.
[Q.WSI.3] Compile burgersFoam. Go into the code directory, type wmake.
[Q.WSI.4] burgers1d is a case directory for the sine wave burgersFoam case. Run
burgersFoam on this. A sampleDict file is set up to sample the values to produce the
plots shown in the lecture. Run

postProcess -func sampleDict

to generate the data.



WSI.2 Compiling a pre-existing code

A good starting point for writing your own apps is to take and modify an existing
program. The core distribution contains a selection of pre-written codes (look for the
applications directory in the OpenFOAM installation directory), and it is well worth
looking through to see what is available. Howwever it would be poor practice to modify
the codes in the core distribution itself (and you may not have edit permissions to do
this anyway). Instead, copy the relevant program directory to your home OpenFOAM
directory and modify the copy. To do this requires making some changes, as follows.

Within the program directory is a subdirectory Make which stores information to
control the compilation process. Specifically, inside this subdirectory are two files; files
and options. options specifies various flags to the compiler (for example where to find
additional libraries) and need not concern us at this stage. files specifies which files
need to be compiled, and importantly, where the resulting executable is to be placed. If
you look in the files file for icoFoam you will find the line

EXE = $(FOAM APPBIN)/icoFoam

which specifies that the executable is to be called icoFoam and that it is to go in a
particular directory (specified by the environment variable FOAM APPBIN). This line will
need to be changed in two ways :

1. The directory specified will be FOAM APPBIN – this would need to be changed to
FOAM USER APPBIN as we do not have the correct privilege to write to the main
installation (nor is it a good idea to be overwriting the main installation even if it
is possible).

2. The name of the executable will probably need to be changed, to avoid confusion.
For example we would probably want to have a program called myIcoFoam to avoid
confusion with icoFoam itself! We could rename the files as well, but this is seldom
necessary.

[Q.WSI.5] In directory lecture2 is a copy of the core icoFoam code. Make a copy
of this and change the name to boussinesqFoam. Change the filename icoFoam.C to
boussinesqFoam, and make the required changes in files. Compile.

WSI.3 Buoyancy and heat transfer

This tutorial models buoyancy effects for a stream of hot air. To do this we must modify
icoFoam to take account of heat transfer and buoyancy. Heat transfer involves solving
the standard heat conduction equation;

∂θ
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Changes of temperature create changes of density in the fluid and this generates different
gravitational forces, leading to convective motion. A full solution would require solving
for a compressible flow, and would need to be done very accurately because the buoyancy
effects are driven by only very small variations in density. However, under certain cir-
cumstances the Boussinesq approximation can be used.1 In this, we can neglect density
differences in the fluid and treat it as an incompressible fluid, but with a body force
proportional to the temperature

∂u

∂t
+∇.u u = −∇p+ ν∇2u− βg(θ0 − θ)

where β is the coefficient of thermal expansion of the fluid, g the gravitational force
vector and θ0 a reference temperature.

A copy of icoFoam is contained in the tutorial file, renamed as boussinesqFoam, and
we will modify it to introduce these additional effects. We need to read in the various
coefficients; κ, ρ0, CV , θ0 and β. The transportProperties dictionary is already opened
in the file createFields.H, so it makes sense to read the additional properties from here.
Open createFields.H in emacs and add lines

dimensionedScalar kappa

(

transportProperties.lookup("kappa")

);

and similar lines for rho0, Cv, theta0 and beta. It is also worth introducing a variable
hCoeff :

dimensionedScalar hCoeff = kappa/(rho0*Cv);

We need to introduce the gravitational accelleration g; this can be read in from the same
dictionary, but of course is a dimensionedVector rather than a dimensionedScalar.

createFields.H also creates the dependent variable fields; we need to create a tem-
perature field theta as a volScalarField and read it in. This is very similar to the
pressure field, so make a copy of the lines starting

Info<< "Reading field p" << endl;

volScalarField p
...

and change them to create a field theta instead.

1This is the Boussinesq approximation in buoyancy, which is different from the Boussinesq approxi-
mation for turbulence modelling.



In the file icoFoam.C we need to modify the momentum equation to include the extra
term, and to create and solve the temperature equation. The momentum equation is
UEqn ; add the additional term

−βg(θ0 − θ)

to this. Add the line

+ beta*g*(theta0-theta)

At the end of the PISO loop we need to create and solve the temperature equation :

fvScalarMatrix tempEqn

(

fvm::ddt(theta)

+ fvm::div(phi,theta)

- fvm::laplacian(hCoeff,theta)

);

tempEqn.solve();

Having done this, type wmake to compile the code.

Also in tutorial4 is a case, bendHeat, which consists of a duct with cooling water
flowing along it. Run blockMesh to generate the mesh, and take a look at the details of
the blockMeshDict; this illustrates how to create curved edges in blockMesh.

We need to modify this case to function with boussinesqFoam. This requires the
following ;

1. Create a theta file in the 0 timestep directory. This is best done by creating a
copy of U and editing it. The inlet conditions for the temperature are θ = 300 K,
and the wall temperatures are θ = 350K. Don’t forget to change the dimensions
of theta as well.

2. Introduce the physical parameters. boussinesqFoam looks for the thermophysical
constants in transportProperties; check that these are in there and that the
values are correct.

3. The differencing schemes need to be specified for the theta equation. These are
in fvSchemes; check that they are appropriate.

4. Finally, solvers in fvSolution needs an entry for the theta equation. Again,
this has been provided, but you should check that it is correct.

Then run boussinesqFoam on the case, and plot the results for two of the resulting
timesteps. Note that if there are errors in the input steps (1-3 above) the code will not
run; but the resulting error messages are quite informative.



[Q.WSI.6] Alter your code boussinesqFoam (as compiled in the last section) to include
the Boussinesq approximation for buoyancy and heat transfer.
[Q.WSI.7] Alter the bendHeat case as indicated to include the theta field, physical
parameters and numerical settings. Run boussinesqFoam on this and post-process the
results.
[Q.WSI.8] Rewrite boussinesqFoam to include an averaged temperature field
thetaAv; for each timestep update this using the current temperature field using the
running average formula :

θn+1
av =

n

n+ 1
θnav +

1

n+ 1
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Plot this and the temperature profile at the outlet.
[Q.WSI.9] From a fresh copy of icoFoam try implementing the Casson equations for a
non-Newtonian fluid. Identify a suitable test case and try running the resulting code.

WSI.4 Adding new model classes – chocolate

In OOP, anything can be a class. So far we have looked at how OpenFOAM uses classes
to create a pseudo-mathematical high level notation for tensor fields and matrix classes
which mimic conventional PDEs. However, classes can also be used to organise physical
models for turbulence, combustion, non-Newtonian viscous models etc. As shown in
the lectures, virtual base classes are used to define an interface to a group of models,
specifying how all members of the group operate, whilst the details of a specific model are
implemented in derived classes (using of course OpenFOAM’s high level mathematical
language to implement the model equations). As well as reflecting the common structure
of (for instance) all turbulence models, this forms the basis for run time selection of these
models – through polymorphism, all derived classes behave in the same way and so are
interchangeable. These groups of models are compiled in the base code as shared object
libraries with the file extension .so

This enables us to add extra models to the library, provided they are derived from the
correct virtual base class. One might think that this would require us to recompile the
whole shared object library, but in fact it is possible simply to add the new classes on by
compiling a new shared object library which can then be linked in at runtime. The class
structure for a model class can be complex, so the best approach is to identify and modify
an existing model class. Here we will add a new class Chocolate to the group of non-
Newtonian viscosity models in OpenFOAM by modifying an existing model powerLaw.

In directory lecture3 there is a code directory Chocolate. This was developed
by copying across the powerLaw directory from the base installation and modifying it;
specifically, changing powerLaw to Chocolate throughout, changing the class data, and
replacing the constructor functions, nu() and correct() within the class. Most im-
portantly, the new code needs to access the original shared object library, so we need



to reference incompressibleTransportModels.so and the associated header files in
options :

EXE_INC = \
-I.. \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude

LIB_LIBS = \
-lfiniteVolume \
-lincompressibleTransportModels

The new shared object library is written to FOAM USER LIBBIN as specified in files :

Chocolate.C

LIB = $(FOAM USER LIBBIN)/libChocolateFlowModels

To make use of this class as part of nonNewtonianIcoFoam we need to specify the
new shared object library in the case files. To do this, add the line

libs ( "libChocolateFlowModels.so" );

to controlDict. You may recognise this entry from running functionObjects or
other add-on libraries – it directs the code to include the specified shared object li-
brary at run time. The Chocolate model class expects to find specific coefficients in
transportProperties, so we have to add these to that dictionary :

transportModel Chocolate;

ChocolateCoeffs

eta eta [ 1 -1 -1 0 0 0 0 ] 4.86;

tau_y tau_y [ 1 -1 -2 0 0 0 0 ] 14.38;

rho rho [1 -3 0 0 0 0 0] 1200;

With these modifications, nonNewtonianIcoFoam is fully equipped to use the new vis-
cosity model.



[Q.WSI.10] The directory Chocolate (in lecture3 directory) contains the files for the
libChocolateFlowModels library, modified from powerLaw as outlined here. Compile
these using the command

wmake libso

to create the appropriate library.
[Q.WSI.11] In the lecture3 directory is a copy of the offsetCylinder case from
the OpenFOAM tutorials. Modify this as described to access the new library (change
controlDict and add the new entries to transportProperties) and run the case.
You might like to compare the results with other non-Newtonian models.
[Q.WSI.12] Directory lecture3b contains a new boundary condition,
parabolicInletVelocity; modified from cylindricalInletVelocity as discussed
in the lectures. Try compiling this and running the ParaPipe case.

WSI.5 Appendix – some useful class functions

OpenFOAM provides a vast array of classes, and even the key ones (time, fvMesh etc)
are actually complex hierachies of derivation. The doxygen-derived html descriptions can
be useful in understanding how the classes fit together and what class functions are avail-
able. These can be generated locally or accessed online (https://cpp.openfoam.org/v5/).
However even this information can be quite complex to understand.

Looking at code is another good way to learn or identify useful classes and class
functions. In the lecture3b directory there is an app boundaries, which prints out
information about every boundary patch in a mesh (patch names and face centre lo-
cations). You might like to look through this and see if you can understand how it
works.

Below are some useful class functions and other code fragments used in various of the
codes in this course. Note that these entries are intended to be informative rather than
pedantically accurate! In particular, a lot of the following functions are const or have
const versions – i.e. they permit access to the information without allowing it to be
changed. There are often different ways to achieve the same result, and the key classes
here are in fact complex hierachies of composite classes and references. The objective
here is to give a little more information to help you read the codes given in the lectures,
and provide a starting point to investigate the different classes.

WSI.5.1 Loops

Obviously repeating a set of instructions is a key element of CFD coding – at the top
level to iterate to a solution or over timesteps, at lower levels, to work through all cells,
or all boundary patches, or whatever. As a high-level language, OpenFOAM inherits all
C++ loop structures, including the while loop :



while (runTime.loop())

{
// code goes here!

}

which is used in quite a few solver apps; the loop repeats until the condition (runTime.loop())
becomes false – see below.

Sometimes we want to loop over elements in a list. OpenFOAM adds structures
called iterators, and a forAll loop structure :

forAll (Times, i)

{
// code goes here!

}

which cycles through all appropriate elements in the list (here the list of timesteps Times)
using an integer variable i.

WSI.5.2 Class functions – Time

Function Description Returns
.times() List of times in case directory. Note that this

includes constant directory; to avoid this you
can use timeSelector::select0(runTime,

args);

instantList

.setTime() Set the time object to a specific timestep

.loop() Returns true if not at the end of the list of
timesteps

Boolean return

.startTime()
Return start and end times for simulation dimensionedScalar

.endTime()

.value() Since Time is basically a list of
dimensionedScalar’s, this gives the numeric
value without the associated information
(dimensions etc)

pure number



WSI.5.3 Class functions – fvMesh and related

fvMesh is derived from polyMesh and inherits a lot of functions from there.

Class functions – fvMesh

Function Description Returns
.C() Returns cell centres volVectorField

.Cf() Returns face centres as surfaceVectorField surfaceVectorField

.V() Returns cell volumes as the internal part of
a volScalarField (and previous timesteps :
.V0(), .V00())

.Sf() Returns cell face area vectors surfaceVectorField

.magSf() Same but cell face area magnitudes surfaceScalarField

.boundary() Returns a reference to the list of boundaries fvBoundaryMesh

fvBoundaryMesh is itself derived from fvPatchList, i.e. is a list of the boundary
patches of the mesh which can be indexed by name.

Class functions – fvBoundaryMesh

Function Description Returns
[‘‘patchName’’] Accesses named patch fvPatch

Class functions – fvPatch

.Cf() Returns face centres as surfaceVectorField vectorField

.name() Name of patch word

WSI.5.4 geometricField

volScalarField, volVectorField, volTensorField are core classes which share sig-
nificant common features – all are fields of tensors of different ranks which know their
dimensions and have boundary information. Thus they are implemented as specific ver-
sions of a template class geometricField. Although this is the correct way to do this,
it does make understanding the various classes that bit more complicated.

Most of the arithmetic operations for fields are fairly obvious – +, -, - etc. behave
as you would expect. However to complete the full set of mathematical operations some
additional symbols have been pressed into service : in particular &, ˆ. C++ allows these
to be overloaded, but it isn’t possible to change the order of precedence – thus they
don’t necessarily behave quite as one would expect in a long expression. If in doubt, add
brackets to make the order of evaluation explicit. Most algebraic functions operate as
expected (including det(T) for the determinant of a volTensorField).



Class functions – geometricField and related
Function Description Returns
internalField() Access the internal field (i.e. not including

boundary information). This is one of the
ways to do this.

field of the
correct type
(scalarField
etc)

.boundaryField() Access a list of the boundary patches field
values

+,- Addition, Subtraction Appropriate
geometricField* Multiplication by a dimensionedScalar

& Inner product; dot product for two vector
fields

ˆ Cross product for two vector fields
* Outer product (higher rank tensors)
.T() Transpose (for volTensorField)

WSI.5.5 Misc issues

The syntax for reading in a dimensionedScalar or other OpenFOAM class from a
dictionary is as follows :

dimensionedScalar nu

(

transportProperties.lookup("nu")

);

However this mechanism doesn’t work for base (C++) variable types. In particular, to
read in a simple floating point number, use the access function readScalar :

scalar R = readScalar(transportProperties.lookup(‘‘radius’’));


