
Runtime Selection
Models, Boundary Conditions and functionObjects

Prof Gavin Tabor

Friday 25th May 2018

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 1 / 32

Polymorphism and Run Time Selection

Results : offsetCylinder case from tutorials

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 2 / 32

Polymorphism and Run Time Selection

Run time selectivity

nonNewtonianIcoFoam allows selection of which viscosity model we want. How does
this work, and can we hang our new model into this framework?

Need to understand how classes work. OOP is about more than designing new language
types – it allows us to define relationships between classes.

Two possible ways to program the complex class. A complex number can be
represented by real and imaginary variables :

class complex
{

//- Real and imaginary parts of the complex number
scalar re, im;
.....

This is encapsulation, a “has-a” relationship

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 3 / 32

Polymorphism and Run Time Selection

Inheritance

Alternatively, recognise that a complex number is a point on a 2-d plane, with particular
extra properties (phase angle, functions such as log. . .).

If we had an existing class point we could extend this to add extra features :

class complex : public point
{

extra parts go here!!

This is inheritance, a “is-a” relationship. The new class extends the definition of the old
one.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 4 / 32

Polymorphism and Run Time Selection

Interface vs. Implementation

In practice, the users don’t need to know how the complex number is represented (the
implementation) – just what functions they can use. This is the interface – defined by the
class definition.

We can take this further and define a virtual base class, which is just the interface with no
implementation. Any class derived from this has to define how the various functions work,
but will thus have the same interface, and so be interchangeable.

All non-Newtonian viscosity models have to return a value for ν. If we derive them all from
a virtual base class, this will force them to have the same interface, so they can be
accessed from a list – run time selection.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 5 / 32

Polymorphism and Run Time Selection

Polymorphism

This is an example of a concept known as polymorphism :
“One of the key features of class inheritance is that a pointer to a derived class is
type-compatible with a pointer to its base class. Polymorphism is the art of taking
advantage of this simple but powerful and versatile feature.”

All viscosity models in OpenFOAM are derived from a base class viscosityModel.
This defines a run time selector function and virtual functions nu() and correct()

Classes stored in

/opt/openfoam5/src/transportModels/incompressible/viscosityModels

and sub-directories

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 6 / 32

Polymorphism and Run Time Selection

Examples – viscosityModels

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 7 / 32

Polymorphism and Run Time Selection

Polymorphism in OpenFOAM

Quite a few things are polymorphic in OpenFOAM;
Turbulence models
Boundary conditions
functionObjects

etc. If we want to create a new turbulence model (viscous model, B.C etc), just derive it
from the base class and it can plug in alongside any other model. OF even has run time
’hooks’ in controlDict which mean the code can be added at runtime.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 8 / 32

Polymorphism and Run Time Selection

Inheritance – turbulence models

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 9 / 32

Casson model in transportModels

Implementing the Casson model

Easiest (again) to copy existing model – eg. powerLaw
1 Copy powerLaw sub-directory to home directory
2 Rename the files Chocolate.H and Chocolate.C; and also change all instances

of powerLaw to Chocolate inside the files.
3 Change over private data to hold the Casson model coefficients; re-implement

constructor, nu() and correct() functions

The make system will compile libraries as well – command wmake libso. Again; this
uses information from a directory Make. Modify the one from viscosityModels :

4 files needs to read in Chocolate.C and write to a library
libChocolateFlowModels in the user directory

5 options needs to reference the transportModels library.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 10 / 32

Casson model in transportModels

files, options

<grtabor@sibelius>more files
Chocolate.C
LIB = $(FOAM_USER_LIBBIN)/libChocolateFlowModels

<grtabor@sibelius>more options
EXE_INC = \

-I.. \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/lnInclude

LIB_LIBS = \
-lfiniteVolume \
-lincompressibleTransportModels

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 11 / 32

Casson model in transportModels

Alterations to case files

Finally need to alter the offsetCylinder case files :
6 Include the line

libs ("libChocolateFlowModels.so");

in controlDict

7 Specify the coefficients in transportProperties :
transportModel Chocolate;
ChocolateCoeffs
{

eta eta [1 -1 -1 0 0 0 0] 4.86;
tau_y tau_y [1 -1 -2 0 0 0 0] 14.38;
rho rho [1 -3 0 0 0 0 0] 1200;

}

Run offsetCylinder case with nonNewtonianIcoFoam!!

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 12 / 32

Classes

Classes in C++

A class in C++ is a structure containing data and functions that act on that data.

These can be
Private – can only be used/manipulated inside the class object
Public – accessible outside

(Protected) . . .

Normally, data is private and functions (methods) are public

When we use a class we instanciate an instance of the class – like declaring a variable.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 13 / 32

Classes

Class functions

Most class functions are called thus :

var.myFunc(); or ptrVar->myFunc();

As a class function, myFunc() can access private data in var – it can also have
additional variables passed to it.

In C++, some functions are declared friends – not part of the class but able to access
private data. Operators (+,- etc) are friend functions.

Class declaration is in .H file – actual code in .c file (except inline functions and
virtual functions)

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 14 / 32

Classes

Types of class function

Constructor – function called to set up instance of class. This will need to call
constructors for any base class(es), and should provide values for any
internal variables (no null constructors allowed)

Copy constructor – invoked when a class instance is duplicated. (Sometimes explicitly
removed to stop this happening!)

Destructor – usually designated myClass() – called when a class instance is
deleted; tidies things up

Virtual – function declaration only; implementation in derived class
Access – function to return private data in some form

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 15 / 32

Classes

Run-time database

(One of) the main functions of classes is to partition off data – avoid clashes between
different variable names. Visibility of data (and privacy) really important.

However

. . . sometimes we want to break this and access objects out of their scope.

OpenFOAM does this using the object database – function call .db(). (Almost) every
class includes the object database at some level and this can be interrogated to return
any object instance (providing you know its name).

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 16 / 32

Parabolic Inlet

Parabolic Inlet

Laminar flow in a pipe gives a parabolic profile – lets implement a new b.c. for this :

u = n̂ · um

(
1− y2

R2

)
Process :

1 Identify an existing B.C. to modify
2 Copy across to user working directory
3 Rename files/classes
4 Re-write class functions
5 Set up library compilation and compile
6 Link in runtime and test

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 17 / 32

Parabolic Inlet

Boundary Conditions

B.C. are in src/finiteVolume/fields/fvPatchFields; subdirectories basic, constraint, derived,
fvPatchField

fvPatchField is the (virtual) base class
basic contains intermediate classes; in particular fixedValue, fixedGradient,
zeroGradient, mixed
derived contains the actual useable classes. cylindricalInletVelocity (derived from
fixedValue) looks suitable!

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 18 / 32

Parabolic Inlet

Initial steps

So :
1 Copy the directory across to the

user directory
2 Rename files cylindricalInletVelocity
→ parabolicInletVelocity (.C, .H files)

3 Change cylindrical→parabolic
throughout

4 Set up Make directory with files and
options

5 Check that it compiles – wmake
libso

files :
parabolicInletVelocityFvPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/libnewBC

options :
EXE_INC = \

-I$(LIB_SRC)/triSurface/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude

LIB_LIBS = \
-lOpenFOAM \
-ltriSurface \
-lmeshTools \
-lfiniteVolume

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 19 / 32

Parabolic Inlet

Changing the Code

C++ classes contain data, class functions. For cylindricalInletVelocity class functions are :
various constructors (complicated), updateCoeffs(), write(Ostream&).

class parabolicInletVelocityFvPatchVectorField
:

public fixedValueFvPatchVectorField
{

// Private data

//- Axial velocity
const scalar maxVelocity_;

//- Central point
const vector centre_;

//- Axis
const vector axis_;

//- Radius
const scalar R_;

public:

//- Runtime type information
TypeName("parabolicInletVelocity");

Private data : we need vectors for
the centre of the inlet and an axis
direction (already there) and
scalars for the maximum velocity
and the pipe radius.

Also need TypeName – will
become the name of the B.C at run
time

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 20 / 32

Parabolic Inlet

Constructor functions

This gets set to zero for a null
constructor :
Foam::
parabolicInletVelocityFvPatchVectorField::
parabolicInletVelocityFvPatchVectorField
(

const fvPatch& p,
const DimensionedField<vector, volMesh>& iF

)
:

fixedValueFvPatchField<vector>(p, iF),
maxVelocity_(0),
centre_(pTraits<vector>::zero),
axis_(pTraits<vector>::zero),
R_(0)

{}

Foam::
parabolicInletVelocityFvPatchVectorField::
parabolicInletVelocityFvPatchVectorField
(

const parabolicInletVelocityFvPatchVectorField& ptf,
const fvPatch& p,
const DimensionedField<vector, volMesh>& iF,
const fvPatchFieldMapper& mapper

)
:

fixedValueFvPatchField<vector>(ptf, p, iF, mapper),
maxVelocity_(ptf.maxVelocity_),
centre_(ptf.centre_),
axis_(ptf.axis_),
R_(ptf.R_)

{}

. . . and copied across for a copy construct

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 21 / 32

Parabolic Inlet

Read in . . .

We want to read in the actual values from the velocity file – a dictionary :

Foam::
parabolicInletVelocityFvPatchVectorField::
parabolicInletVelocityFvPatchVectorField
(

const fvPatch& p,
const DimensionedField<vector, volMesh>& iF,
const dictionary& dict

)
:

fixedValueFvPatchField<vector>(p, iF, dict),
maxVelocity_(readScalar(dict.lookup("maxVelocity"))),
centre_(dict.lookup("centre")),
axis_(dict.lookup("axis")),
R_(readScalar(dict.lookup("radius")))

{}

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 22 / 32

Parabolic Inlet

. . . and write out

Write out through the write(Ostream& os) function :

void Foam::parabolicInletVelocityFvPatchVectorField::write(Ostream& os) const
{

fvPatchField<vector>::write(os);
os.writeKeyword("maxVelocity") << maxVelocity_ <<

token::END_STATEMENT << nl;
os.writeKeyword("centre") << centre_ << token::END_STATEMENT << nl;
os.writeKeyword("axis") << axis_ << token::END_STATEMENT << nl;
os.writeKeyword("radius") << R_ <<

token::END_STATEMENT << nl;
writeEntry("value", os);

}

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 23 / 32

Parabolic Inlet

updateCoeffs()

This is the actual code
setting the boundary
conditions

Again; we can modify
what is already there!
OpenFOAM syntax
makes this easier
(Note call to
updateCoeffs() in parent
class)

void Foam::parabolicInletVelocityFvPatchVectorField::updateCoeffs()
{

if (updated())
{

return;
}

vector hatAxis = axis_/mag(axis_);

const scalarField r(mag(patch().Cf() - centre_));

operator==(hatAxis*maxVelocity_*(1.0 - (r*r)/(R_*R_)));

fixedValueFvPatchField<vector>::updateCoeffs();
}

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 24 / 32

Testing

Pipe flow case

Set up a test case – flow in a circular pipe. 5 block blockMesh demonstrating curved
boundaries (circle arcs) and m4 script variables

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 25 / 32

Testing

B.C syntax

If we look at the “Read in . . .”
constructor, see that we need to
specify

maxVelocity
centre (a vector)
axis (another vector)
radius

Also need a dummy “value”

inlet
{

type parabolicInletVelocity;
axis (0 0 1);
centre (0 0 0);
maxVelocity 30;
radius 10;
value (0 0 0);

}

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 26 / 32

Testing

Results

Replace inlet with new condition

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 27 / 32

Programming Tools

Programming Tools

Tools and information sources which may make your life easier!

You can do all your programming using command line + editor (such as emacs). However
many programmers use IDE – Integrated Development Environment – provides integrated
tools (such as highlighting) to make your life easier.

One example – Eclipse. Instructions (thanks Ben J) online :
https:
//openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse

https://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_
Eclipse/Fool_the_indexer

https://www.youtube.com/watch?v=yT9Ia8ESVoY

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 28 / 32

https://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse
https://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse
https://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse/Fool_the_indexer
https://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse/Fool_the_indexer
https://www.youtube.com/watch?v=yT9Ia8ESVoY

Programming Tools

doxygen

doxygen is a software tool for analysing C++ class structures. It relies on structured
comments in header files plus C++ keywords to generate html documentation.

OpenFOAM class files written to take advantage of this – can run doxygen on library to
generate output.

Results also online;https://cpp.openfoam.org/v5/

Useful for identifying class functions, class relationships etc.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 29 / 32

https://cpp.openfoam.org/v5/

Programming Tools

Class files

Easiest way to build a new class – start with pre-existing one. Get familiar with what is in
the library!

(Easiest way to build new app – start from pre-existing one!)

There are tools for setting up new class files from scratch in the library –
foamNewSource, (foamNewTemplate). Run these to generate a “bare-bones”
framework and fill in the spaces.

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 30 / 32

Programming Tools

Other sources

Prof Hakan Nilsson runs an MSc course on OpenFOAM – student project reports online
http://www.tfd.chalmers.se/˜hani/kurser/OS_CFD/

Dr Joszef Nagy maintains the community repository
https://wiki.openfoam.com/Tutorials

UK&RI Users Group, international OpenFOAM Workshop both feature training days
http://openfoamworkshop.org/

Prof Hrv Jasak runs “The Summer School” (various times of year) – boot camp for
OpenFOAM developers! https://foam-extend.fsb.hr/numap/

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 31 / 32

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
https://wiki.openfoam.com/Tutorials
http://openfoamworkshop.org/
https://foam-extend.fsb.hr/numap/

Summary

Summary

Take-home message(s) :
OpenFOAM programming should not be seen as scary or risky!!
Think “MatLab for CFD”.
Easy to read code; modify existing apps; implement transport equations – even add
whole new models at run time.

More info : email: g.r.tabor@ex.ac.uk

Prof Gavin Tabor Runtime Selection Friday 25th May 2018 32 / 32

	Polymorphism and Run Time Selection
	Casson model in transportModels
	Classes
	Parabolic Inlet
	Testing
	Programming Tools
	Summary

