
OpenFOAM Programming – the basic classes

Prof Gavin Tabor

Friday 25th May 2018

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 1 / 30

Overview : programming in OpenFOAM

OpenFOAM : Overview

OpenFOAM is an Open Source CCM (predominantly CFD) code based on 2nd order
FVM on arbitrary unstructured (polyhedral cell) meshes. Full range of modelling
(turbulence, combustion, multiphase) and solution algorithms.

Several independent versions and developments (-dev, pyFoam)
Extensive user community :

13th OpenFOAM Workshop: JT University Shanghai

Academic and commercial usage.

OpenFOAM comes with extensive pre-written solvers – can still be used as a “black box”
CFD tool. However, strictly, OpenFOAM is not a CFD code – it is an open source C++
library of classes for writing CFD codes.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 2 / 30

Overview : programming in OpenFOAM

Programming in OpenFOAM

OpenFOAM can best be treated as a special programming language for writing CFD
codes. Much of this language is inherited from C (basic I/O, base variable types, loops,
function calls) but the developers have used C++’s object-orientated features to add
classes (trans : additional variable types) to manipulate :

higher level data types – eg. dimensionedScalar
FVM meshes (fvMesh)
fields of scalars, vectors and 2nd rank tensors
matrices and their solution

With these features we can code new models, solvers and utilities for CFD.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 3 / 30

Overview : programming in OpenFOAM

Open Source software development encourages code sharing and information exchange.
OpenFOAM’s structure and use of C++ is ideal for this and provides a common platform
for CFD research.

At the highest level, provides a framework for significant development projects.

Taxonomy of OpenFOAM use :
User Use pre-written apps “as is” – free at point of use.

Modeller Use OpenFOAM modelling language to develop new models, apps
Guru Develops base code (!)

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 4 / 30

Overview : programming in OpenFOAM

Course requirements and overview

Starting point – I assume :
You know how to run OpenFOAM simulations
You have some programming experience – C++ (not essential), C, Python, Java . . .

Course will cover : top level syntax; reading code; modifying existing apps (and coding
your own); run time selection and introducing new model classes.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 5 / 30

Overview : programming in OpenFOAM

Base types

C++ implements some obvious basic types;
int, float, double, char

OpenFOAM adds some additional classes;
label, scalar
dimensionedScalar, vector, dimensionedVector etc...
storage classes
GeometricField (volScalarField etc)
Time, database, IOobject. fvMatrix

All variables need to be initisalised before use (good practice) – no null constructors.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 6 / 30

Overview : programming in OpenFOAM

These can be used in the same way as built-in types. E.g. OpenFOAM implements a
complex number class complex. Users can declare a complex number :

complex myVariable(5.0,2.0);

access functions associated with the class :

Info << myVariable.Re() << endl;

and perform algebraic operations

sum = myVariable + myVariable2;

where appropriate

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 7 / 30

Overview : programming in OpenFOAM

Higher level syntax : Burgers equation

OpenFOAM provides additional classes which aim to provide ‘pseudo-mathematical’
syntax at top level. Eg. Burgers equation :

1d Burgers equation :

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

3d version (conservative form) :

∂u
∂t

+
1
2
∇.(u u) = ν∇2u

Implemented in OpenFOAM as :

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ 0.5*fvm::div(phi, U)
- fvm::laplacian(nu, U)

);

UEqn.solve();

This syntax makes it very easy to understand (and debug) the code. Classes also include
other features to prevent mistakes (eg. automatic dimension checking).

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 8 / 30

Overview : programming in OpenFOAM

Explanation

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ 0.5*fvm::div(phi, U)
- fvm::laplacian(nu, U)

);

UEqn.solve();

U is a volVectorField defined on a
mesh – a discretised representation of the
field variable u
fvm::ddt etc. construct entries in matrix
equation of form

My = q

M, q are known, so this can be inverted to advance one step
solve() performs this inversion to solve for one step

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 9 / 30

Overview : programming in OpenFOAM

Enclose in loop and iterate :

while (runTime.loop())
{

Info << "Time = " << runTime.timeName() << nl << endl;

#include "CourantNo.H"

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ 0.5*fvm::div(phi, U)
- fvm::laplacian(nu, U)

);

UEqn.solve();

U.correctBoundaryConditions();

phi = (fvc::interpolate(U) & mesh.Sf());

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 10 / 30

Overview : programming in OpenFOAM

Test case : 1-d sine wave

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 11 / 30

Overview : programming in OpenFOAM

Turbulent Kinetic Energy equation

Equation solved as part of the standard k − ε model :

∂k
∂t

+∇.uk −∇. [(ν + νt)∇k] = νt

[
1
2

(
∇u +∇uT

)]2

− ε

k

Implemented as :

solve
(

fvm::ddt(k)
+ fvm::div(phi, k)
- fvm::laplacian(nu()+nut,k)
== nut*magSqr(symm(fvc::grad(U)))
- fvm::Sp(epsilon/k,k)

);

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 12 / 30

Basic classes

Header files

Sections of code in C++ programs often coded in separate files – compiler reads in all the
files and processes them one by one.

Often it is useful to group certain types of code lines together – eg. all function prototypes
as a header file.

C++ provides a preprocessor which can be used to include files into other files :

#include ‘‘myHeaderFile.H’’

OpenFOAM uses this more widely to separate sections of code which are widely used.
Eg. CourantNo.H is a file containing several lines of code for calculating the Courant
number – widely used.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 13 / 30

Basic classes

Memory access

Most languages provide facilities to manipulate storage in memory – typically through an
array of variables – a table of variables that can be accessed using an index

C++ provides 3 mechanisms; arrays, pointers and references.

An array is an indexed block of variables of a specific type;

int values[5];

creates an array of integers numbered 0 . . . 4.
We can access the individual components using the [] syntax;

values[2] = 20;

Arrays of all types are possible; int, double, char etc.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 14 / 30

Basic classes

OpenFOAM data structures

OpenFOAM also provides a number of classes for creating and addressing memory;
these include : List, ptrList, SLList.

These are templates which can be declared for any storage type. Commonly used
versions are given specific names, eg.

List<label> someList;

is the same as

labelList someList;

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 15 / 30

Basic classes

Output

C++ output is through streams – objects to which output can be redirected using the <<
operation.

OpenFOAM implements its own versions of these for IO (screen); Info object :

Info<< "Time = " << runTime.timeName() << nl << endl;

Communication to disk (files, dictionaries, fields etc) controlled by IOobject

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 16 / 30

Meshes and Fields

fvMesh

Geometric (mesh) information held in fvMesh object. Basic mesh information held
includes points, faces, cells and boundaries (eg. points as pointField, cells as
cellList).

Read in from constant/polyMesh

Additional information such as cell centres, face centres available.

Addressing information also held (eg. edgeFaces – all edges belonging to a face).

fvMesh also responsible for mesh changes due to mesh motion.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 17 / 30

Meshes and Fields

GeometricField

Fields of objects (vectors, scalars, tensors etc) defined at each point on the mesh :
volScalarField field of scalars (eg. pressure)
volVectorField field of vectors (eg. velocity)
volTensorField field of 2nd rank tensors (eg. stress)

Each field also has dimensions associated – automatic dimension checking – and
boundary conditions.

Access functions provided for boundary and internal values; also previous timestep data
(where appropriate).

Algebraic operations defined (+,-,*,/, etc).

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 18 / 30

IO

IOobject and objectRegistry

OpenFOAM maintains an object registry of entities (such as dictionaries, fields etc.)
which are to be read in or written out.

IOobject defines the I/O attributes of entities managed by the object registry.

When the object is created or asked to read : MUST READ, READ IF PRESENT,
NO READ

When the object is destroyed or asked to write : AUTO WRITE, NO WRITE

Top-level object registry associated with Time class – controls time during OpenFOAM
simulations

Usually declared as a variable runTime

Provides a list of saved times runTime.times()
Provides other info; timestep, time names etc.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 19 / 30

IO

Example – reading dictionary

In fo<< "Reading transportProperties" << endl ;

I O d i c t i o n a r y t r a n s p o r t P r o p e r t i e s
(

IOob jec t
(

"transportProperties" ,
runTime . constant () ,
mesh ,
IOob jec t : : MUST READ,
IOob jec t : : NO WRITE

)
) ;

dimensionedScalar nu
(

t r a n s p o r t P r o p e r t i e s . lookup ("nu")
) ;

Create IOdictionary
object to interface with
transportProperties
file
File read in at creation
Then look up ‘‘nu’’ in
the dictionary

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 20 / 30

IO

Example – reading field

vo lVec to rF ie l d U
(

IOob jec t
(

"U" ,
runTime . timeName () ,
mesh ,
IOob jec t : : MUST READ

) ,
mesh

) ;

volVectorField read
in from disk
Must be read
Associated with
runTime database

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 21 / 30

IO

Example – writing field

v o l S c a l a r F i e l d magU
(

IOob jec t
(

"magU" ,
runTime . timeName () ,
mesh ,
IOob jec t : : NO READ,
IOob jec t : : AUTO WRITE

) ,
: : mag(U)

) ;

magU. w r i t e () ;

Construct mag(U)
object –
volScalarField

No read – construct
using ::mag() function
Then write it out.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 22 / 30

IO

Example – magU

inc lude ” fvCFD .H”

int main (int argc , char ∗argv [])
{
inc lude ” addTimeOptions .H”

inc lude ” setRootCase .H”

inc lude ” createTime .H”

i n s t a n t L i s t Times = t imeSe lec to r : : se lec t0 (runTime , args) ;

inc lude ” createMesh .H”

A program must contain at
least one block called main

OpenFOAM uses #include
to store commonly-used code
sections
runTime is a variable of
OpenFOAM class Time –
used to control the
timestepping through the code

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 23 / 30

IO

for (l a b e l i =0; i<runTime . s ize () ; i ++)
{

runTime . setTime (Times [i] , i) ;
I n f o << "Time: " << runTime . value () << endl
vo lVec to rF ie l d U
(

IOob jec t
(

"U" ,
runTime . timeName () ,
mesh ,
IOob jec t : : MUST READ

) ,
mesh

) ;
v o l S c a l a r F i e l d magU
(

IOob jec t
(

"magU" ,
runTime . timeName () ,
mesh ,
IOob jec t : : NO READ,
IOob jec t : : AUTO WRITE

) ,
: : mag(U)

) ;
magU. w r i t e () ;

}
return 0;

Loop over all possible
times
Read in a
volVectorField U

Construct a
volScalarField
magU

and write it out.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 24 / 30

IO

Compilation

Example – magU

<grtabor@emps-copland>ls
Make magU.C magU.dep

Directory contains
File magU.C

Dependency file magU.dep

Directory Make

To compile, type wmake

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 25 / 30

Derivatives and differencing

Derivatives

Navier-Stokes equations ;

∇.u = 0
∂u
∂t

+∇.u u = −1
ρ
∇p + ν∇2u

Several types of derivative here :

∂

∂t
,

∂2

∂t2 time derivatives

∇p = i
∂p
∂x

+ j
∂p
∂y

+ k
∂p
∂z

Gradient

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 26 / 30

Derivatives and differencing

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 Laplacian

∇.u u Transport term

Each has its own peculiarities when being evaluated.

OpenFOAM is a finite volume code – integrate equations over volume of computational
cell as first step in solution. Spatial derivatives constructed via Gauss’ theorem (fluxes at
cell faces)

Operators can be evaluated using known values – explicit evaluation – or future values
(matrix solve) – implicit evaluation.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 27 / 30

Derivatives and differencing

fvc::, fvm:: operators

Evaluation of these terms through named functions. Need to distinguish implicit and
explicit versions of mathematically similar terms. The functions are grouped into
namespaces.

Explicit Evaluate derivative based on known GeometricField values – functions
grouped into namespace fvc::

Implicit Evaluate derivative based on unknown values. This creates a matrix
equation

Mx = q

which has to be inverted to obtain the solution. Functions grouped into
namespace fvm:: – generate fvMatrix object which can be inverted.

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 28 / 30

Derivatives and differencing

Explicit evaluation and fvc::

These functions perform an explicit evaluation of derivatives (i.e. based on known values).
All functions return appropriate geometricField :

Operation Description
fvc::ddt(A) time derivative ∂A

∂t (A can be scalar, vector or tensor field)
fvc::ddt(rho,A) density-weighted time derivative ∂ρA

∂t (ρ can be any scalar
field in fact).

fvc::d2dt2(rho,A) Second time derivative ∂
∂t

(
ρ ∂A
∂t

)
fvc::grad(A) Gradient ∇A – result is a volVectorField. This

can also be applied to a volVectorField to give a
volTensorField

fvc::div(VA) Divergence of vector field VA – returns a
volScalarField

fvc::laplacian(A) Laplacian of A; ∇2A
fvc::laplacian(s,A) Laplacian of A; ∇ · (s∇A)
fvc::curl(VA) Curl of VA; ∇× VA

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 29 / 30

Derivatives and differencing

Implicit evaluation and fvm::

These construct the matrix equation

Mx = q

These functions return fvMatrix object. Function names are the same as before (but
with fvm:: rather than fvc::).

Some additional functions :

Operation Description
fvm::div(phi,A) Divergence of field A (can be a vector or tensor as well as a scalar field)

explicitly using the flux φ to evaluate this.
fvm::Sp(rho,A) Implicit evaluation of the source term in the equation.
fvm::SuSp(rho,A) Implicit/Explicit source term in equation, depending on sign of rho

Prof Gavin Tabor OpenFOAM Programming – the basic classes Friday 25th May 2018 30 / 30

	Overview : programming in OpenFOAM
	Basic classes
	Higher-level programming in OpenFOAM
	Meshes and Fields
	IO
	Derivatives and differencing

