
Version Control Systems & Git

Stuart Pullinger

stuart.pullinger@stfc.ac.uk

based on a presentation by Steven Lamerton

mailto:stuart.pullinger@stfc.ac.uk


Version Control Systems

“Version control is a system that records changes to a file or 
set of files over time so that you can recall specific versions 
later.” – Pro Git Book



Version Control Systems

• No longer need to copy files around to keep previous 
versions

– No more mazes of folders

– No more copying files to USB drives

• Find out why changes were made, who made them and 
when

• Makes collaboration easier

– No fear about overwriting work

– No copying to network drives / emailing files around

– Support for better workflows





Centralised Version Control



Distributed Version Control



Version Control Systems

• Centralised

– CVS

– SVN

– Perforce

– Team Foundation Server

• Distributed:

– Git

– Mercurial

– Bazaar

– BitKeeper

– Darcs

Git has been chosen for the CCP-WSI code repository



Git

• Started in 2005 by Linus Torvalds, the founder of Linux, to 
manage the code for the Linux kernel

• Features:

– Fully distributed

– Fast

– Widely supported: hosting, GUIs, tools & documentation

• Widely used by other projects including:

– Android

– GCC

– OpenFOAM



Overview

• Files can be in one of four states

– Untracked – not managed by Git

– Unmodified – managed by Git, no changes

– Modified – managed by Git, has changes since the last 
version

– Staged – managed by Git, has changes which are marked to 
be part of the next commit

• Once you are happy with the staged changes you commit 
them, adding a descriptive message



Basic Commands



Branching & Merging

• Branches simplify development 

– Allows divergence from the master branch to avoid 
breaking it

– Useful to separate development of different features and 
bug fixes

– Especially useful with many collaborators

• Once work is finished it can be merged back into the 
master branch again

– Possibility causing conflicts if others have worked on the 
same areas of the files



Basic History



Basic Branch



Basic Merge



Complex History



Distributed Working

• Examples so far have been for a local repository, the 
concepts are exactly the same for working as a group

• Can add other repositories as remotes

– For example the repository on CCPForge

– Could also be another developers repository

• Code can be pushed and pulled between repositories

– Essentially branches, which can be merged into the local 
copy



Distributed Workflow



Don’t Panic!

• Lots of new concepts in this presentation

– Practical sessions later today

– Plenty of time to discuss over coffee / lunch

• By the end of today you should be able to:

– Get the CCP-WSI repository

– Make your own changes on a branch

– Merge that branch into the development branch

– Push the changes back to the repository



Acknowledgements

• All diagrams and the leading quote are from the Pro Git 
book and licensed under the Creative Commons 
Attribution-NonCommercial-ShareAlike 3.0 License. 

• The Version Control comic is from Geek & Poke and 
licensed under the Creative Commons Attribution 3.0 
License

• These slides were created by Steven Lamerton


